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Abstract: Training sets are usually chosen so that they represent the database as a whole;
random selection helps to maintain this integrity. In this study, the prediction of aqueous solubility
was used as a specific example of using the individual molecule for which solubility is desired,
the target molecule, as the basis for choosing a training set. Similarity of the training set to the
target molecule rather than a random allocation was used as the selection criteria. The Tanimoto
coefficients derived from Daylight’s binary fingerprints were used as the molecular similarity
selection tool. Prediction models derived from this type of customization will be designated as
“on-the-fly local” models because a new model is generated for each target molecule which is
necessarily local. Such models will be compared with “global” models which are derived from
a one-time “preprocessed” partitioning of training and test sets which use fixed fitted parameters
for each target molecule prediction. Although both fragment and molecular descriptors were
examined, a minimum set of MOE (molecular operating environment) molecular descriptors
were found to be more efficient and were use for both on-the-fly local and preprocessed global
models. It was found that on-the-fly local predictions were more accurate (r2 ) 0.87) than the
preprocessed global predictions (r2 ) 0.74) for the same test set. In addition, their precision
was shown to increase as the degree of similarity increases. Correlation and distribution plots
were used to visualize similarity cutoff groupings and their chemical structures. In summary,
rapid “on-the-fly” similarity selection can enable the customization of a training set to each target
molecule for which solubility is desired. In addition, the similarity information and the model’s
fitting statistics give the user criteria to judge the validity of the prediction since it is always
possible that good prediction cannot be obtained because the database and the target molecule
are too dissimilar. Although the rapid processing speed of binary fingerprints enable the “on-
the-fly” real time prediction, slower but more feature rich similarity measures may improve follow-
up predictions.
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accuracy; precision; local prediction; global prediction; average similarity; Tanimoto coefficients

Introduction
The proper selection of a training set is one of the most

basic operations in quantitative structure property relation-

ships (QSPRs). Small, relevant, and homogeneous data sets
have and continue to be the workhorse for structure-activity
predictions when the activity for a new analogue is needed
for a particular chemical series. For large data sets that have
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been compiled, however, the selection of a training set is
critical since compounds of diverse chemical structure are
contained within the chemical space of the database. PHYS-
PROP (www.syrres.com), for example, is a database of
physical chemical properties that contains 13,250 compounds
(December 2006). It is, in general, very challenging to build
a satisfactory global QSPR for a large database that contains
such diverse structural classes. Bergstrom et al.1 have
discussed the advantages of local models over truly global
models and the requirements that are placed on the training
set. Choosing proper training and test sets is critical for
successful predictions. Training sets codify the relationship
between the relevant property and chemical structure while
test sets validate the predictions obtained from these relation-
ships. Bias in either set will impact the statistical probability
that the desired property can be accurately predicted for an
unknown compound. Thus a randomized selection of these
two sets is most often used to increase the probability that
they reflect the database as a whole. Tetko, in selecting test
and training sets in associated neural networks, divided the
PHYSPROP database randomly into two equal sets of 6454
compounds.2

For global modeling, especially, it is important that both
sets reflect the database as a whole.3-6 Although a model
can be developed from a large diverse training set as shown
in Figure 1, the training set that was used might not be
appropriate for a particular target molecule. The target may
have properties that are not found in the training set. Even
if there are relevant examples in the training set, the global
model will be biased toward those examples that are in
greatest numbers, leaving sparsely represented substructures
to suffer a poor fit that accompanies a minority class.

Randomization minimizes, but does not overcome, the
potential disparity that occurs for a minority class. Such a
model based on a preprocessed training set usually will have
no indication of the validity of the prediction for a particular
target molecule. Retraining will be needed when new
structural features emerge as new data accumulates. En-
sembles of many local models overcome some of the issues
with global models. Tetko and Tanchuk2 tested an ensemble
of up to 256 associative neutral networks (ASNN), each
optimized for a particular domain, to predict solubility and
partition coefficient. This ensemble approach was shown to
work well,7-9 but it has the disadvantage of needing to
specify the number of ensemblesa priori.

Use of similarity-based selection of a local training set
method is an alternative method to the preprocessed global
approach. Lazy learning methods10 defer the selection of a
training set until the target molecule is identified. Local lazy
regression (LLR)11 obtains a prediction using a local
neighboring set. Recently, Zhang and co-workers12 developed
a novel automated lazy learning QSAR (ALL-QSAR) using
a locally weighted regression technique and applied it to

(1) Bergstrom, C. A. S.; Wassvik, C. M.; Norinder, U.; Luthman,
K.; Artursson, P. Global and Local Computational Models for
Aqueous Solubility Prediction of Drug-like Molecules.J. Chem.
Inf. Comput. Sci.2004, 44, 1477-1488.

(2) Tetko, I. V.; Tanchuk, V. Y. Application of Associative Neutral
Networks for Prediction of Lipophilicity in AlogPs 2.1 Program.
J. Chem. Inf. Comput. Sci. 2002, 42, 1136-1145.

(3) Platts, J. A.; Butina, D.; Abraham, M. H; Hersey A. Estimation
of Molecular Free Energy Relation Descriptors Using a Group
Contribution Approach.J. Chem. Inf. Comput. Sci.1999, 39, 835-
845.

(4) (a) Yalkowsky, S. H.; Valvani, S. C.; Roseman, T. J. Solubility
and Partitioning VI: Octanol Solubility and Octanol-Water
Partition Coefficients.J. Pharm. Sci. 1983, 72, 866-870. (b) Jain,
N.; Yalkowsky, S. H. Estimation of the Aqueous Solubility I:
Application to Organic Nonelectrolytes.J. Pharm. Sci.2001, 90,
234-252. (c) Yang, G.; Ran, Y.; Yalkowsky, S. H. Prediction of
the Aqueous Solubility: Comparison of the General Solubility
Equation and the Method Using an Amended Solvation Energy
Relationship.J. Pharm. Sci. 2002, 91, 517-533.

(5) Yalkowsky, S. H.; Pinal, R.; Banerjee, S. Water Solubility: A
Critique of the Solvatochromic Approach.J. Pharm. Sci. 1988,
77, 74-77.

(6) Bergstrom, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P.
Molecular Descriptors Influencing Melting Point and Their Role
in Classification of Solid Drugs.J. Chem. Inf. Comput. Sci. 2003,
43, 1177-1185.

(7) Pan, D.; Iyer, M.; Liu, J.; Li, Y.; Hopfinger, A. Constructing
Optimum Blood Brain Barrier QSAR Models Using a Combina-
tion of 4D Molecular Similarity Measures and Cluster Analysis.
J. Chem. Inf. Model.2004, 44, 2083-2098.

(8) Klekota, J.; Brauner, E.; Schreiber, S. Identifying Biologically
Active Compound Classes Using Phenotypic Screening Data and
Sampling Statistics.J. Chem. Inf. Model. 2005, 45, 1824-1836.

(9) He, L.; Jurs, P. Assessing the Reliability of a QSAR Model’s
Predictions.J. Mol. Graphics Modell.2005, 23, 503-523.

(10) (a) Aha, D. W. Lazy Learning.Artif. Intell. ReV. 1997, 11, 7-10.
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with Lazy Learning.Knowl.-Based Intell. Inf. Eng. Syst. Part 2,
Proc. 2003, 2774, 919-926. (c) Armengol, E.; Plaza, E. Relational
Case-Based Reasoning for Carcinogenic Activity Prediction.Artif.
Intell. ReV. 2003, 20, 121-141. (d) Atkeson, C. G.; Moore, A.
W.; Schaal, S. Locally Weighted Learning.Artif. Intell. ReV. 1997,
11, 11-73. (e) Wettschereck, D.; Aha, D. W.; Mohri, T. A Review
and Empirical Evaluation of Feature Weighting Methods for a
Class of Lazy Learning Algorithms.Artif. Intell. ReV. 1997, 11,
273-314.

(11) Guha, R.; Dutta, D.; Jurs, P. C.; Chen, T. Local Lazy Regres-
sion: Making Use of the Neighborhood to Improve QSAR
Predictions.J. Chem. Inf. Model.2006, 46, 1836-1847.

(12) Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A
Novel Automated Lazy Learning QSAR (ALL•QSAR) Ap-
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Figure 1. On-the-fly local versus preprocessed global mod-
els.
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virtual screening with reasonable success. The weights with
which training set compounds are included in the regression
depend on the similarity of those compounds to the target
molecule; Euclidean distance in multidimensional descriptor
space was used as the similarity metric. Guha et al.11

investigated the use of local lazy regression (LLR), where
the neighborhood of the target compound in the database is
determined on-the-fly and is used to build a linear model,
which is then used to predict the activity of the target
molecule. The neighborhood was determined as thek nearest
neighbors in the descriptor space wherek was automatically
determined using a leave-one-out (LOO) cross-validation
procedure in the lazy package available for R 2.2.0.

Previous similarity based approaches used (1) small
databases of 50-75 molecules and (2) the same descriptor
set to calculate both similarity (Euclidian distance) and
prediction (regression). In this study, we studied a large
database of 9433 molecules to increase the probability of
being able to select a training set that has highly similar
properties to the target molecule. In addition, the training
set selection descriptor (Tanimoto coefficients from Daylight
fingerprints13) was orthogonal to the descriptors (MOE) that
were used for regression prediction. We hypothesized that
superior results over previous attempts might be possible if
the descriptor set reflected as much molecular specificity as
possible consistent with high speed on-the-fly evaluations.
Thus binary fingerprint evaluations were chosen as the basis
for a similarity metric. Similarity was chosen as the selection
parameter for choosing training sets since many studies14

show that prediction accuracy is correlated to the similarity
of a test compound to those in the training set. In addition,
a similarity-based training set selection can provide for a
determination of the relative validity of the training set for
the target molecule. In some situations, it is conceivable that
good predictions are not possible because sufficiently similar
molecules are not available in the database. Knowledge of
this fact was deemed to be useful since the user could then
disregard appropriate predictions until more relevant mol-
ecules are available in the database. This is the advantage
of the on-the-fly nature of this procedure compared to
preprocessed global models.

Materials and Methods
Dataset: Source and Preparation.An internal database

of aqueous thermodynamic solubility, collected and compiled
by Lipinski,15 was used for analysis. The set of 11,026
compounds with experimentally measured solubility values
was cleaned using the Pipeline Pilot v.4.0 from the Scitegic
to remove all salts and keep only organic compounds which

contain exclusively C, H, O, N, S, P, F, Cl, Br, and I atoms.
The final dataset of 9443 druglike compounds with a
molecular weight greater than 100 was obtained after
applying Lipinski’s Rule of Five.16

Partition of the Dataset into Training and Test Sets.
The entire dataset of 9443 compounds was partitioned into
training and test sets to develop and evaluate the models.
To select a training set to be representative of the whole
dataset in chemical space, a diversity analysis was performed
using the Pipeline Pilot’s FCFP•4 (functional class finger-
print to a maximum diameter of 4). Based on the diversity
analysis, 30% of the most diverse structures from the entire
dataset were selected to be the diverse set. From the
remainder of the dataset (70%), approximately 30% was
randomly selected and saved as the test set, and the rest were
combined with the diverse set to form the training set. The
final training set consists of 7543 compounds (80% of the
whole dataset); the test set 1900 compounds (20% of the
whole dataset). The solubility distributions of both training
and test sets were fairly normal. For both data sets, logS
(µM) values range from-6 to +5 log units and were
centered at 0.5 log unit.

Similarity. All molecules were characterized using Day-
light’s SMILES/SMARTS/FINGERPRINT toolkits.13 Ca-
nonical SMILES strings were then used to represent the
whole molecule and SMARTS for the functional fragments.
The Tanimoto similarity coefficients based on the Daylight
fingerprints were used as a measure of the similarity between
two molecules.17

Molecular Descriptors. For model building, two sets of
descriptors were calculated. (1) MOE 2D descriptors: A set
of 146 2D molecular descriptors were calculated using the
MOE 2004.03 software18 from the Chemical Computing
Group, Inc. (2) Fragment descriptors: A wide variety of
molecular fragments similar to Abraham’s3 were generated
and defined as SMART strings. A set of the 60 most common
fragments in the training set is shown in Table 1. The
Daylight’s SMARTS toolkit was used to parse the predefined
SMARTS strings to produce pattern objects. For each
molecule, a molecule object is created from its SMILES
string. Then, a series of pattern objects was tested to see if
the molecule contained the specific patterns. If the molecule
contained a specific pattern object, the number of occurrences
of this fragment was recorded, and if not, zero is recorded.
The number of occurrences of these fragments was used as
the descriptor.

(13) Daylight Theoretical Manual, Daylight CIS, Inc., 27401 Los Altos,
Suite 360, Mission Viejo, CA 92691.

(14) Sheridan, R. P.; Bradley Feuston, P.; Maiorov, V. N.; Kearsley,
S. K. Similarity to Molecules in the Training Set Is a Good
Discriminator for Prediction Accuracy in QSAR.J. Chem. Inf.
Comput. Sci. 2004, 44, 1912-1928.

(15) In-house database.

(16) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and Computational Approaches to Estimate Solubil-
ity and Permeability in Drug discovery.AdV. Drug DeliVery ReV.
1997, 23, 3-25.

(17) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity
Searching.J. Chem. Inf. Comput. Sci. 1998, 38, 983-996

(18) MOE (Molecular Operating Environment) from Chemical Com-
puting Group Inc., 1010 Sherbrooke St. West Suite 910, Montreal,
Quebec, 3A 2R7, Canada.
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Table 1. Fragment Definition and the Descriptions

fragment smarts description

[$([CH3X4]C),$([CH2](C)C)] # 1′ and 2′ carbon
[$([CH1X4](C)(C)C)] # 3′ and
[$([CH0X4](C)(C)(C)C)] # 4′ carbon
[CX4]([A,H])([A,H])([A,H])a # carbon connected to one aromatic
[CX4]([A,H])([A,H])(a)a # carbon connected to two aromatic
[CX3])[CX3] # CdC
[CX3])[!C] # C double bond with other atoms
[cH](c)c # aromatic carbon CH
[cX3H0;R1][C] # aromatic C with carbon substitution
[cX3H0;R1][N,O,S,P] # substituted aromatic carbon
[cX3H0;R1][Cl,F,Br,I] # halide substituted aromatic carbon
[c&!R1] # bridge aromatic carbon
[$(C#CA),$(C)C)C)] # triple bond and CdCdC
A)A-A)A # resonant structure CdC-CdC
[$([OX2H1]C)] # OH-C
[$([OX2H1]c)] # OH-c
[$(C-O-C)] # ether, aliphatic
[$(C-O-c),$(c-O-c)] # ether, aromatic′′
[$(c[CX3;!R1]()[OX1])[OX2H])] # aromatic carboxylic acid -COOH
[$(C[CX3;R1]()[OX1])[OX2,NX3])] # lactam or lactone
[#6][#16][#6] # thio ether
[$([NX3H2]C),$([NX3H1](C)C)] # 1′ and 2′ amine attached to aliphatic
[NX3H2,NX3H1]c # 1′ or 2′ amine attached to aromatic
[nX2H0] # pyridine nitrogen
[nX3H0&R2] # bridge nitrogen
[O-O,S-S] # O-O, S-S′′
N-O # N-O oxide
N-N # hydrozine
N)N # NdN
S)C # SdC
[$(N#CA)] # CN with aliphatic
[$(N#Ca)] # CN with aromatic
[$([CX3R1]())[OX2,NX3][CX3R1]()))] # phthalimide or anhydrous acid
[#9] # Fluorine
[#17] # chlorine
[#35] # bromide
[#53] # iodine
[#15] # phosphorus
[$([NX2])O)] # NO
[$([#7]())(∼[#8])) # NO2
[$([CX3H0;!R1]())([NX3H2,NX3H1])C)] # aliphatic amide
[$([CX3H0;!R1]())([NX3H2,NX3H1])c)] # 1′ and 2′ amide, aromatic
[$([CX3H0;!R1]())([NX3H0])C)] # 1′ and 2′ amide, aliphatic
[$([CX3H0;!R1]())([NX3H0])c)] # 3′ amide, aromatic′′
[$([PX4]()))] # PO3
[$([PX4]()))] # P(d)O2
[$([SX4]())()))] # SO2
[$([SX4]())())[NX3H0,OX2H0])] # SO3
[$([SX4]())())[NX3H1,NX3H2,OX2H1])] # SO2N
[$([OX2H][AA,aa][OX2&!R,NX3H0&!R])] # 5-member hbond
[$([OX2H1]Caa∼[O,NH0])] # 6-member hbond
[$([OH1,NX3H1&!R,NX3H2][aR1][aR2][aR1]∼[O,N])] # 6-member hbond
[$([NX3H1&!R,NX3H2][AA,aa][O&!R,NH0&!R])] # 6-member hbond
n:n # 1,2-aromatic nitrogen
n:c:n # 1,3-aromatic nitrogen
n:c:s # 1,3-thiozine
F,Cl,Br,I]-cc-[F,Cl,Br,I] # neighboring halide
F,Cl,Br,I]-CC-[F,Cl,Br,I] # neighboring halide
F,Cl,Br,I]-C-[F,Cl,Br,I] # multiple halide
[r3,r4] # 3, 4-member rings
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Statistics Analysis.A statistical package CoStat19 was
used to dynamically build multiple linear regression models
and to make prediction from the models. The results from
CoStat were verified from Minitab20 as well as SPlus 2000
(Professional release 3, MathSoft Inc, Seattle, WA). We used
an independent test set to evaluate the predictability of the
models rather than other popular cross-validation techniques
such as leave-one-out (LOO) or leave-group-out (LGO).21

To measure the performance of the model on the test set,
we used the correlation between experimental and the
predicted values,r2, as well as the absolute prediction error
(APE), which is the difference between predicted and
experimental values.

Preprocessed Global Model.Global models were devel-
oped from the entire training set. The multiple linear
regression (MLR) models for logS were generated using
the above-mentioned two sets of descriptors. Variable
selections were performed with both descriptor sets using
the subset selection available in Minitab and stepwise
regression in JMP.22 The final models were selected with
the highestr2 with the least number of descriptors.

On-the-Fly Local Models. For each molecule in the test
set of 1900 molecules, an on-the-fly local model was
developed from a customized training set using the same
set of descriptors in the preprocessed global model. The
customized training set was selected based on the molecular
similarity from the entire training set (7543 molecules). For
a model with the MOE descriptors, a set of the 50 most
similar molecules was selected from the entire training set
to build a MLR model. For a MLR model with fragment-
based descriptors, a set of 100 of the most similar molecules
was selected from the entire training set. For the test set of
1900 molecules, 1900 predictions were made from 1900 on-
the-fly local models for each of the two descriptor sets. The
performances of on-the-fly local models and preprocessed
global models were compared in terms ofr2 and the absolute
deviation (AD).

Application Work Flow. The application had client and
server components. The server, running on a SGI Octane 2

workstation, accessed the data stored in an Oracle database
and calculated the similarity between molecules using
Daylight fingerprints; on the other hand, the client, which
was deployed with Java Web Start technology, com-
municated with the server using Java RMI (remote method
invocation). The overall work flow of this application is
shown in Figure 2. When test set molecules have been loaded
into the application, the user has options to select the
descriptor sets, the size of the customized training sets, or
the similarity cutoff. Then, for each test molecule, the
algorithm calculates and sorts the molecular similarity
coefficients for the training set. The most similar molecules
(based on the Tanimoto similarity coefficient and user’s
option) make up the customized training set for the test
molecule. An on-the-fly local MLR model is created and
the prediction for the test molecule from the model is made
along with statistics, such asr2, r2

adj, the number of training
molecules, the number of descriptors, and the molecular
similarity distribution. The chemical structures and properties
of the associated training set are also provided to the end
user for visualization.

The local model implementation provides three possible
ways to select the training set: (1) the size of the training
set, (2) a molecular similarity cutoff, and (3) both the training
set size and a similarity cutoff. If the size of the training set
is provided, this application will return the specified number
of training molecules regardless of the molecular similarities.
If the molecular similarity cutoff was supplied, every
molecule with molecular similarity equal to or higher than
the cutoff, regardless of the size of the training set, was used
for model creation. Finally, if both the size of the training
set and the molecular similarity cutoff were selected, the
molecular similarity cutoff was applied before the training
set size. For example, if there were fewer molecules with
similarity cutoffs than specified with the size of the training

(19) CoStat 6.2, CoHort Software, 798 Lighthouse Ave. PMB 320,
Monterey, CA 93940.

(20) Release 13.31, Minitab Inc, State College, PA.
(21) Breiman, L.; Spector, P. Submodel Selection and Evaluation in

Regression: The X-Random Case.Int. Stat. ReV. 1992, 60, 291-
319

(22) Release 5.1.1, SAS Institute Inc., SAS Campus Drive, Cary, NC
27513.

(23) CRC Handbook of Chemistry and Physics; CRC Press: Boca
Raton, 1994.

(24) Wildman, S. A.; Crippen, G. M. Prediction of Physiochemical
Parameters by Atomic Contributions.J. Chem. Inf. Comput. Sci.
1999, 39, 868-873.

(25) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar
Surface Area as a Sum of Fragment-Based Contributions and Its
Application to the Prediction of Drug Transport Properties.J. Med.
Chem. 2000, 43, 3714-3717.

(26) Labute, P. MOE LogP(Octanol/Water) Model. unpublished. Source
code in $MOE/lib/svl/quasar.svl/q_logp.svl (1998).

Figure 2. Computational flow from target to prediction and
visual check.
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set, then only those with the given similarity cutoff were
used. On the other hand, even if more molecules met the
given similarity cutoff, only the top molecules were kept.
In this paper, we report the results using the fixed training
size (case 1) to compare the performance of the on-the-fly
local with the preprocessed global model.

Results and Discussion
Since a good model involves an efficient descriptor set as

well as a good training set, performances were compared
on the same test set to examine the differences between the
descriptors (fragment and MOE-molecular) and the models
(on-the fly local and preprocessed global).

Comparison of Descriptor Types in Preprocessed
Global Model. Two types of preprocessed global models
for log S were developed using the fragment and MOE-
molecular descriptors. Figure 3 shows the performance of
these two descriptor types in terms ofr2. After the rapid
rise in r2 for two to three descriptors, a graded cumulative
improvement is seen as the number of descriptors increases
to 30. For fragment-based descriptors, 10 descriptors gave

an r2 ) 0.58; all 60 descriptors, anr2 ) 0.70. The MOE
descriptors, on the other hand, gave anr2 ) 0.74 with the 9
descriptors shown in Table 2; anr2 ) 0.77 was obtained
with all 146 MOE descriptors. Some of the descriptors are
highly correlated. The Pearson product-moment correlations
betweenS log P and logP(o/w) are 0.9 and between TPSA
and vsa•pol are 0.93. Every other pair has correlation below
0.6. The relative importance of the descriptors in decreasing
order is logP(o/w), S log P, SMR•VSA5, weight, a•ICM,
TPSA, vsa•pol, PEOE•RPC-, and PEOE•VSA•POS. The
descriptors were selected using the forward selection of the
stepwise regression tool in the JMP program. Although log
P(o/w) andS log P are correlated, each made a correlation
contribution to the minimal set to justify retaining both.
Figure 3 shows that MOE molecular descriptors were more
efficient than the fragment-based descriptors. Apparently, the
MOE descriptors more efficiently capture a broad solubility-
chemical space than molecular fragments. Similarly, MOE
descriptors outperformed fragment descriptors in absolute
prediction error (APE). For absolute predicted deviations of
less than 0.5 log unit, the full 60 fragment set gave an APE
of 56% whereas the 9 MOE descriptors gave an APE of 51%.

Figure 3. Descriptor efficiency for preprocessed global
models.

Table 2. The Top Nine MOE Descriptors

descriptor description

a•ICM Atom information content (mean). This is the entropy of the element distribution in the molecule
(including implicit hydrogens but not lone pair pseudo-atoms). Let ni be the number of
occurrences of atomic number i in the molecule. Let pi ) ni/n where n is the sum of the ni.
The value of a•ICM is the negative of the sum over all i of pi log pi.

weight Molecular weight (including implicit hydrogens) with atomic weights taken from ref 23.
PEOE•RPC- Relative negative partial charge: the smallest negative charge divided by the sum of the negative

charge.
PEOE•VSA•POS Total positive van der Waals surface area.
vsa•pol Approximation to the sum of VDW surface areas of polar atoms (atoms that are both hydrogen bond

donors and acceptors), such as -OH.
S log P Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an atomic

contribution model24 that calculates log P from the given structure, i.e., the correct protonation
state (washed structures). Results may vary from the log P(o/w) descriptor. The training set for
S log P was ∼7000 structures.

SMR•VSA5 Subdivided molecular refractivity (sum of vi such that Ri is in 0.44-0.485).
TPSA Polar surface area calculated using group contributions to approximate the polar surface area from

connection table information only. The parametrization is that of Ertl et al.25

log P(o/w) Log of the octanol/water partition coefficient (including implicit hydrogens). This property is calculated
from a linear atom type model26 with r2 ) 0.931, RMSE ) 0.393 on 1827 molecules.

Figure 4. The similarity profile for a given test molecule.
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Although we initially explored both descriptor sets, further
analysis will focus on models based on the MOE descriptors.

Choosing a Training Set for the On-the-Fly Local
Models. The Tanimoto coefficient was used as a measure
of molecular similarity for bitwise fingerprints. For a given
molecule in a given database, there will be subgroups of
molecules, nearest neighbors, that have the same range of
Tanimoto coefficients in the solubility database. Figure 4
shows the Tanimoto coefficient for the illustrated compound
(2-{2-[(Z)-5-nitro-thiazol-2-ylimino]thiazolidin-3-yl}-
ethanol) plotted against the number of molecules that are in
the top 1000 nearest neighboring subgroups. As similarity
declines, the number of nearest neighbors drops first rapidly
and then more slowly as the structures become less related.
Since molecular structures are not evenly distributed across
chemical space, some molecules have more very similar
neighbors and some have fewer; however, for the dynamic
local model based on similarity, the most similar set of
molecules is always used as the training set to construct the
model and make the prediction.

On-the-Fly Local Models.A local model was developed
with the MLR method for each of the 1900 molecules in
the test set using the same descriptor set as the corresponding
global models. As discussed above, because of the high
efficiency of MOE descriptors, fewer training molecules were
sufficient to create a local model and the direct benefit was
that the overall similarity of the training set to the target
molecule was higher for the MOE descriptor based model.
The result was apparent and convincing: for the prediction
of 1900 test molecules, the global model with MOE
descriptors gaver2 of 0.74 and the global model with the

fragment descriptors 0.7. The local model with the MOE
descriptors renderedr2 of 0.87 and the local model with
fragment descriptors 0.82. In both cases, the local model
approach delivered a 17% of prediction improvement.

Similarity Impact on Precision and Accuracy. In Figure
4, the Tanimoto coefficients were shown to have a monotonic
relationship to the number of molecules that were in subsets
with similar coefficients. For the on-the-fly local MOE
models, a new parameter, the average similarity, AS, was
defined as in eq 1,

where TC is the Tanimoto coefficient andN is the size of
training set. We tried to use AS to measure and compare
quantitatively the similarities of the training sets. In Figure
5, for each compound in the test set, the AS was calculated
for the training set. The 1900 compounds were divided into
6 AS groups: [g0.8], [0.7, 0.8], [0.6, 0.7], [0.5, 0.6], [0.4,
0.5], [<0.4]. Figure 5 shows the distributions of the absolute
prediction deviation (APD) for these six groups. The
histograms show that molecular similarity dictates accuracy
and precision as measured by the centering and the spread
of the diagrams.

For a given test molecule, structurally similar neighbors
share a core structure in such a way that their solubilities
can be modeled. This is the essence of local modeling in
which variations can be handled in an environment of low
diversity and reduced prediction error. In addition, average
similarity (AS) can be used as a confidence index for the

Figure 5. Precision and accuracy increase with greater similarity. Each histogram graph corresponds to a specific average
similarity (AS) bin, for example, the first (upper left) graph shows the distribution of prediction deviations with AS g 0.8 bin while
the second is for AS bin ) 0.7-0.8.
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specific target molecule. The global model, on the other hand,
only provides an average level of confidence over the training
set.

Simpler and more accurate quantitative structure activity
relationships (QSAR) are then possible because the training
sets are closer core analogues.27 This is similar to clustering
algorithms28,29except for the training set. In contrast, global
static models generally employ a large number of descriptors
and predictions represent an average response based on
global property variations. With the dynamic selection of
training sets, the prediction error is small if suitable training
molecules are available in the database. For MOE descriptors,
this was found to be the case for the aqueous solubility
database that was investigated. The average similarity, in
turn, can be used as an indicator of the prediction confidence.
Although this methodology was applied to aqueous solubility

in this study, it should be applicable to many QSAR problems
and some ADMET end points. However, because the
technique carries out on-the-fly selection of training sets from
entire databases, it is not as rapid as pretrained computational
routines. A study with a goal similar to that of this study
used a technique called local lazy regression.30

Visualization of Molecular Similarity. Since each on-
the-fly local model was built from a small number of similar
training molecules, their experimental property values would
be of great interest to the model user. The training set
information, readily available from this application, may
provide the user further confidence in the prediction through
the visual verification of the structures of the training set.
The SAR information in the training set can also provide
guidance for optimizing the lead compound for desired
properties. For each prediction, the training set for the model
compound is shown. Structures of the molecules in the
training set can be scrolled through to verify the similarity
to the target molecule. The plot of logS versus similarity
for the training set is also shown with the molecules in the
training set in red squares and the target molecule in blue
(see Figure 6). These plots make it easy for the user to see
whether the prediction is a more reliable interpolation or a

(27) Hammett, L. P.Physical Organic Chemistry, 2nd ed.; McGraw-
Hill: New York, 1970.

(28) Brown, R. D.; Martin, Y. C. Use of Structure-Activity Data To
Compare Structure-Based Clustering Methods and Descriptors for
Use in Compound selection.J. Chem. Inf. Comput. Sci. 1996,
36, 572-584.

(29) Fan Y.; Shi, L. M.; Kohn, K. W.; Pommier, Y.; Weinstein, J. N.
Quantitative Structure-Antitumor Activity Relationships of Camp-
tothecin Analogues: Cluster Analysis and Genetic Algorithm-
Based studies.J. Med. Chem. 2001, 44, 3254-3263.

(30) Bontempi, G.; Birattari, M.; Bersini H. Lazy learning for modeling
and control design.Int. J. Control1999, 72, 643-658.

Figure 6. Visual evaluation of the on-the-fly local model’s properties.
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less reliable extrapolation. The correlation diagram of the
experimental property with the predicted property for the
training model also allows for a visual assessment of the
fitness of the dynamically built local model. Users can ask
and evaluate issues such as the following: (1) Was the
solubility prediction made with structurally similar training
neighbors? (2) How does the training set’s solubility vary?
(3) How good is the model’s fit to the training set?

Because the local on-the-fly models give more information
than the preprocessed global model, virtual screening might
well be used before chemical synthesis in lead optimization.

Future Work. The current study utilized the Tanimoto
coefficient with Daylight fingerprints to select the customized
training set for a target molecule from a large dataset and a
set of MOE molecular descriptors for the generation of a
local on-the-fly model. While this approach clearly delivered
a good performance with reasonable computational speed, a
set of the same MOE descriptors could be used for the
training set selection and model building as was done by
others.11 However, this approach assumes that the same set
of descriptors identified from the global model is also
appropriate and efficient for selecting the local training set
for each target molecule, which might not be always right,
as discussed by the authors in the literature. Another potential
approach is to select a training set by merging all the
compounds identified and apply multiple training set selec-
tion strategies to build on-the-fly local models. The closest
molecules in the descriptor space could then be combined
with the molecules identified by the fingerprints to build
models.

Summary

For any modeling effort, quality data is needed. Quality
means that data not only is experimentally accurate but also
is appropriate for the target molecule. An on-the-fly selection
of the training set was developed which enabled the
prediction of local QSPR models based on training cohorts
that are similar to the target molecule. In this study, the very
rapid Daylight fingerprints were used as the basis for
similarity. This makes an on-the-fly algorithm practical while
enabling the training set to be customized to the target
molecule. This has advantages over a prediction that is based
on a preprocessed regression model built on the entire dataset.
However, further improvements are still possible. If a rapid
measure of similarity is used as a screen, then some of the
newer feature-rich descriptors like circular fingerprints,31

COSMOfrag, shape signature, LINGO SMILE substring, and
3D similarity and graphs might be used to further enhance
the prediction accuracy. One of the main advantages of a
similarity based paradigm is that the prediction can be
assessed with respect to a confidence metric based on the
similarity of the target molecule to the training set. Predic-
tions that have poor similarity might be disregarded.

MP0700155

(31) Glen, R. C.; Bender, A.; Arnby, C. H.; Carlsson, L.; Boyer, S.;
Smith, J. Circular fingerprints: Flexible molecular descriptors with
applications from physical chemistry to ADME.IDrugs 2006, 9,
199-204.
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