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Abstract: Training sets are usually chosen so that they represent the database as a whole;
random selection helps to maintain this integrity. In this study, the prediction of agueous solubility
was used as a specific example of using the individual molecule for which solubility is desired,
the target molecule, as the basis for choosing a training set. Similarity of the training set to the
target molecule rather than a random allocation was used as the selection criteria. The Tanimoto
coefficients derived from Daylight's binary fingerprints were used as the molecular similarity
selection tool. Prediction models derived from this type of customization will be designated as
“on-the-fly local” models because a new model is generated for each target molecule which is
necessarily local. Such models will be compared with “global” models which are derived from
a one-time “preprocessed” partitioning of training and test sets which use fixed fitted parameters
for each target molecule prediction. Although both fragment and molecular descriptors were
examined, a minimum set of MOE (molecular operating environment) molecular descriptors
were found to be more efficient and were use for both on-the-fly local and preprocessed global
models. It was found that on-the-fly local predictions were more accurate (2 = 0.87) than the
preprocessed global predictions (2 = 0.74) for the same test set. In addition, their precision
was shown to increase as the degree of similarity increases. Correlation and distribution plots
were used to visualize similarity cutoff groupings and their chemical structures. In summary,
rapid “on-the-fly” similarity selection can enable the customization of a training set to each target
molecule for which solubility is desired. In addition, the similarity information and the model’s
fitting statistics give the user criteria to judge the validity of the prediction since it is always
possible that good prediction cannot be obtained because the database and the target molecule
are too dissimilar. Although the rapid processing speed of binary fingerprints enable the “on-
the-fly” real time prediction, slower but more feature rich similarity measures may improve follow-
up predictions.

Keywords:  On-the-fly selection; training set; test set; QSPR; aqueous solubility; descriptors;
accuracy; precision; local prediction; global prediction; average similarity; Tanimoto coefficients

Introduction ships (QSPRs). Small, relevant, and homogeneous data sets

basic operations in quantitative structure property relation- Predictions when the activity for a new analogue is needed
for a particular chemical series. For large data sets that have
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been compiled, however, the selection of a training set is
critical since compounds of diverse chemical structure are
contained within the chemical space of the database. PHYS-
PROP (www.syrres.com), for example, is a database of
physical chemical properties that contains 13,250 compounds
(December 2006). It is, in general, very challenging to build

zusceﬁlsg?\fé??é gls(i?ﬁt(jrirIzIgsaelsér%ee(:géi?ﬁjeet{]a;;\?ema'nsFigure 1. On-the-fly local versus preprocessed global mod-

. els.
discussed the advantages of local models over truly global
models and the requirements that are placed on the trainingg;nqomization minimizes. but does not overcome. the

set. Choosing proper training and test sets is critical for yqential disparity that occurs for a minority class. Such a

Zu;:\;essfl#]pre?mtlorls. Tralntmg sgtshcod!fy Ithf reltat|onskr]1.|lp model based on a preprocessed training set usually will have
etween he relevant property and cnemical Structure Whtle , , 3 ication of the validity of the prediction for a particular
test sets validate the predictions obtained from these relation-

. L . L . target molecule. Retraining will be needed when new
ships. Bias in either set will impact the statistical probability 9 9

. . structural features emerge as new data accumulates. En-
that the desired property can be accurately predicted for an .
. . sembles of many local models overcome some of the issues
unknown compound. Thus a randomized selection of these

two sets is most often used to increase the probability thatWlth global models. Tetko and TancHffiested an ensemble

they reflect the database as a whole. Tetko, in selecting testOf up to 256 associative neutral networks (ASNN), each

and training sets in associated neural networks, divided the@Ptimized for a particular domain, to predict solubility and
PHYSPROP database randomly into two equal sets of 6454Partition coefficient. This ensemble approach was shown to
compounds. work well,”~® but it has the disadvantage of needing to
For global modeling, especially, it is important that both specify the number of ensemblaspriori.
sets reflect the database as a wHofeAlthough a model Use of similarity-based selection of a local training set
can be developed from a large diverse training set as shownmethod is an alternative method to the preprocessed global
in Figure 1, the training set that was used might not be approach. Lazy learning methd@slefer the selection of a
appropriate for a particular target molecule. The target may training set until the target molecule is identified. Local lazy
have properties that are not found in the training set. Evenregression (LLRY obtains a prediction using a local
if there are relevant examples in the training set, the global neighboring set. Recently, Zhang and co-workedsveloped
model will be biased toward those examples that are in a novel automated lazy learning QSAR (ALL-QSAR) using
greatest numbers, leaving sparsely represented substructures locally weighted regression technique and applied it to
to suffer a poor fit that accompanies a minority class.

Global Training Set

Local Training Sets,
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virtual screening with reasonable success. The weights withcontain exclusively C, H, O, N, S, P, F, Cl, Br, and | atoms.
which training set compounds are included in the regressionThe final dataset of 9443 druglike compounds with a
depend on the similarity of those compounds to the target molecular weight greater than 100 was obtained after
molecule; Euclidean distance in multidimensional descriptor applying Lipinski’'s Rule of Five?®

space was used as the similarity metric. Guha €t al.  partition of the Dataset into Training and Test Sets.

investigated the use of local lazy regression (LLR), where 1he entire dataset of 9443 compounds was partitioned into
the neighborhood of the target compound in the database iSyining and test sets to develop and evaluate the models.
determined on-the-fly and is used to build a linear model, 14 ggject a training set to be representative of the whole

Wh'ICh IIS t;f N uge:btohprzdlct tr(;e aCt'_V '% 0;:;; target yataset in chemical space, a diversity analysis was performed
molecule. The neighborhood was determined a rest using the Pipeline Pilot's FCER4 (functional class finger-

ne|ghb9rs n th? descriptor space whkrgas automaucally. print to a maximum diameter of 4). Based on the diversity
determined using a leave-one-out (LOO) cross-validation . . _
analysis, 30% of the most diverse structures from the entire

prc;c;:\(j:)rueslns'i[;e";iy %Zzléijgeaav?g:gzgoru;i2(.(1)). small dataset were selected to be the diverse set. From the
databases of 5075 myolecules aﬁg (2) the same descriptor remainder of the dataset (70%), approximately 30% was
set to calculate both similarity (Euclidian distance) and rando_mly se!ected a’.‘d saved as the test set, an the rest were
prediction (regression). In this study, we studied a large c_ombm(_ad_ with the d|yerse set 1o form the training set. The
database of 9433 molecules to incre'ase the probability ofﬁnal training set consists of 7543 compounds (80% of the
. 0

being able to select a training set that has highly similar whole dataset); the test S.e.t 19.00.c0r.np0unds (20@0.f the

whole dataset). The solubility distributions of both training

properties to the target molecule. In addition, the training q eair] | For both d q
set selection descriptor (Tanimoto coefficients from Daylight and test sets were fairly normal. For bot ) ata sets,3og
(uM) values range from—6 to +5 log units and were

fingerprint$®) was orthogonal to the descriptors (MOE) that X
were used for regression prediction. We hypothesized thatcentered at 0.5 log unit.

superior results over previous attempts might be possible if ~ Similarity. All molecules were characterized using Day-
the descriptor set reflected as much molecular specificity aslight's SMILES/SMARTS/FINGERPRINT toolkit$? Ca-
possible consistent with high speed on-the-fly evaluations. nonical SMILES strings were then used to represent the
Thus binary fingerprint evaluations were chosen as the basiswhole molecule and SMARTS for the functional fragments.
for a similarity metric. Similarity was chosen as the selection The Tanimoto similarity coefficients based on the Daylight
parameter for choosing training sets since many stifdies fingerprints were used as a measure of the similarity between
show that prediction accuracy is correlated to the similarity two molecules?

of a test compound to those in the training set. In addition,  \olecular Descriptors. For model building, two sets of

a similarity-based training set selection can provide for a descriptors were calculated. (1) MOE 2D descriptors: A set
determination of the relative validity of the training set for 4t 146 2D molecular descriptors were calculated using the
the target molecule. In some situations, it is conceivable that \ ;0 2004.03 softwaf@ from the Chemical Computing
good predictions are not possible because sufficiently similarGroup, Inc. (2) Fragment descriptors: A wide variety of

molecules are not available in the database. Knowledge Ofmolecular fragments similar to Abraharhisere generated

th's fact was dee”.‘ed to be. “?‘Ef“' since the user could thenand defined as SMART strings. A set of the 60 most common
disregard appropriate predictions until more relevant mol-

ecules are available in the database. This is the advantag fragments in the training set is shown in Table 1. The
. ) (fDayIight’s SMARTS toolkit was used to parse the predefined
of the on-the-fly nature of this procedure compared to . .
preprocessed global models. SMARTS strings to produce_ pattern objects_. For each
molecule, a molecule object is created from its SMILES
. string. Then, a series of pattern objects was tested to see if
Materials and Methods the molecule contained the specific patterns. If the molecule
Dataset: Source and PreparationAn internal database  contained a specific pattern object, the number of occurrences
of aqueous thermodynamic solubility, collected and compiled of this fragment was recorded, and if not, zero is recorded.

by Lipinski,'> was used for analysis. The set of 11,026 The number of occurrences of these fragments was used as
compounds with experimentally measured solubility values the descriptor.

was cleaned using the Pipeline Pilot v.4.0 from the Scitegic
to remove all salts and keep only organic compounds which

(16) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and Computational Approaches to Estimate Solubil-

(13) Daylight Theoretical Manual, Daylight CIS, Inc., 27401 Los Altos, ity and Permeability in Drug discovenidv. Drug Delivery Re.
Suite 360, Mission Viejo, CA 92691. 1997 23, 3—25.

(14) Sheridan, R. P.; Bradley Feuston, P.; Maiorov, V. N.; Kearsley, (17) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity
S. K. Similarity to Molecules in the Training Set Is a Good SearchingJ. Chem. Inf. Comput. Sc1998 38, 983-996
Discriminator for Prediction Accuracy in QSAR. Chem. Inf. (18) MOE (Molecular Operating Environment) from Chemical Com-
Comput. Sci2004 44, 1912-1928. puting Group Inc., 1010 Sherbrooke St. West Suite 910, Montreal,

(15) In-house database. Quebec, 3A 2R7, Canada.
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Table 1. Fragment Definition and the Descriptions

fragment smarts

description

492

[$([CH3X4]C),$([CH2](C)C)]
[$([CH1X4](C)(C)C)]
[$([CHOX4](C)(C)(C)C)]
[CXAI(AHD(AHD(A,HDa
[CX4](AH]D(A.H](2)a

[CX3]=[CX3]

[CX3]=[!C]

[cH](c)c

[cX3HO;R1][C]

[cX3HO;R1][N,0,S,P]
[cX3HO;R1][CI,F,Br,I]

[c&!R1]

[$(C#CA),$(C=C=C)]

A=A-A=A

[$([OX2H1]C)]

[$([OX2H1]c)]

[$(C-0-C)]

[$(C-O-c),$(c-0O-c)]
[$(c[CX3;IR1](=[OX1])[OX2H])]
[$(C[CX3;R1])(=[OX1])[0X2,NX3])]
[#6][#16][#6]
[$(INX3H2]C),$(INX3H1](C)C)]
[NX3H2,NX3H1]c

[NX2HO]

[NX3HO&R?2]

[0-0,5-S]

N-O

N-N

N=N

S=C

[$(N#CA)]

[$(N#Ca)]
[$(ICX3R1](=)[0X2,NX3][CX3R1](=))]
[#9]

[#17]

[#35]

[#53]

[#15]

[$(INX2]=0)]

[B(#71(=)(~[#8])
[$(ICX3HO;!R1](=)(INX3H2,NX3H1])C)]
[$(ICX3HO;IR1](=)(INX3H2,NX3H1])c)]
[$(ICX3HO;!R1](=)(INX3HO])C)]
[$([CX3HO;!R1](=)(INX3HO0])c)]
[B(PX41(=))]

[$([PX4](=))]

[B(SX4=)=)]
[$([SX4](=)(=)[NX3H0,0X2H0])]
[$([SX4](=)(=)[NX3H1,NX3H2,0X2H1])]
[$([OX2H][AA,aa][OX2&!R,NX3HO0&!R])]
[$([OX2H1]Caa~[O,NHO0])]
[$([OH1,NX3H1&!R,NX3H2][aR1][aR2][aR1]~[O,N])]
[$(INX3H1&!IR,NX3H2][AA,aa][O&!R,NHO&!R])]
n:n

n:c:n

n:c:s

F,Cl,Br,l]-cc-[F,Cl,Br,1]
F,ClI,Br,I]-CC-[F,CI,Br,1]
F,Cl,Br,I]-C-[F,Cl,Br,]]

[r3,r4]

MOLECULAR PHARMACEUTICS VOL. 4, NO. 4

# 1' and 2' carbon
# 3' and
# 4' carbon

# carbon connected to one aromatic
# carbon connected to two aromatic

# C=C
# C double bond with other atoms
# aromatic carbon CH

# aromatic C with carbon substitution

# substituted aromatic carbon

# halide substituted aromatic carbon

# bridge aromatic carbon

# triple bond and C=C=C

# resonant structure C=C—C=C
#OH-C

# OH—cC

# ether, aliphatic

# ether, aromatic”

# aromatic carboxylic acid —COOH

# lactam or lactone
# thio ether

# 1' and 2' amine attached to aliphatic
#1' or 2' amine attached to aromatic

# pyridine nitrogen

# bridge nitrogen
#0-0, S-S"

# N—O oxide

# hydrozine

# N=N

#S=C

# CN with aliphatic

# CN with aromatic

# phthalimide or anhydrous acid
# Fluorine

# chlorine

# bromide

# iodine

# phosphorus

#NO

#NO2

# aliphatic amide

#1' and 2' amide, aromatic
#1' and 2' amide, aliphatic
# 3' amide, aromatic”
#PO3

# P(=)02

#S02

# S0O3

# SO2N

# 5-member hbond

# 6-member hbond

# 6-member hbond

# 6-member hbond

# 1,2-aromatic nitrogen
# 1,3-aromatic nitrogen
# 1,3-thiozine

# neighboring halide

# neighboring halide

# multiple halide

# 3, 4-member rings
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Statistics Analysis. A statistical package CoStétwas
used to dynamically build multiple linear regression models
and to make prediction from the models. The results from
CoStat were verified from Minita® as well as SPlus 2000
(Professional release 3, MathSoft Inc, Seattle, WA). We used
an independent test set to evaluate the predictability of the
models rather than other popular cross-validation techniques
such as leave-one-out (LOO) or leave-group-out (L&O).
To measure the performance of the model on the test set
we used the correlation between experimental and the
predicted values?, as well as the absolute prediction error
(APE), which is the difference between predicted and
experimental values.

Preprocessed Global ModelGlobal models were devel-

1. Load/create target molecules
2. Select database, descriptor set
and training set size

Setup

J

Find training set

1. calculate similarity against
target molecule
2. sort molecule list by similarity

\3. retrieve top similar molecules

calculate
fragment descriptors

4

get precomputed
MOE descriptors

Ny

create model

i

oped from the entire training set. The multiple linear
regression (MLR) models for lo§ were generated using
the above-mentioned two sets of descriptors. Variable

make prediction

1. load training set structures and
observed properties

2. plot propertiy distribution and
regression correlation

visual check

selections were performed with both descriptor sets using
the subset selection available in Minitab and stepwise ) o
regression in JMP2 The final models were selected with E/gure 2. Computational flow from target to prediction and
the highest? with the least number of descriptors. visual check.

On-the-Fly Local Models. For each molecule in the test
set of 1900 molecules, an on-the-fly local model was workstation, accessed the data stored in an Oracle database
developed from a customized training set using the sameand calculated the similarity between molecules using
set of descriptors in the preprocessed global model. TheDaylight fingerprints; on the other hand, the client, which
customized training set was selected based on the moleculavas deployed with Java Web Start technology, com-
similarity from the entire training set (7543 molecules). For municated with the server using Java RMI (remote method
a model with the MOE descriptors, a set of the 50 most invocation). The overall work flow of this application is
similar molecules was selected from the entire training set shown in Figure 2. When test set molecules have been loaded
to build a MLR model. For a MLR model with fragment-  into the application, the user has options to select the
based descriptors, a set of 100 of the most similar moleculesdescriptor sets, the size of the customized training sets, or
was selected from the entire training set. For the test set ofthe similarity cutoff. Then, for each test molecule, the
1900 molecules, 1900 predictions were made from 1900 on-algorithm calculates and sorts the molecular similarity
the-fly local models for each of the two descriptor sets. The coefficients for the training set. The most similar molecules
performances of on-the-fly local models and preprocessed(based on the Tanimoto similarity coefficient and user’s
global models were compared in termg®énd the absolute  option) make up the customized training set for the test
deviation (AD). molecule. An on-the-fly local MLR model is created and

Application Work Flow. The application had client and the prediction for the test molecule from the model is made
server components. The server, running on a SGI Octane 2along with statistics, such a3 rZ,q;, the number of training
molecules, the number of descriptors, and the molecular
similarity distribution. The chemical structures and properties
of the associated training set are also provided to the end
user for visualization.

The local model implementation provides three possible
ways to select the training set: (1) the size of the training

(19) CosStat 6.2, CoHort Software, 798 Lighthouse Ave. PMB 320,
Monterey, CA 93940.

(20) Release 13.31, Minitab Inc, State College, PA.

(21) Breiman, L.; Spector, P. Submodel Selection and Evaluation in
Regression: The X-Random Cas&. Stat. Re. 1992 60, 291

319 PR o
set, (2) a molecular similarity cutoff, and (3) both the trainin

(22) Release 5.1.1, SAS Institute Inc., SAS Campus Drive, Cary, NC ( ) L ty . ) L. g

27513, set size and a similarity cutoff. If the size of the training set

(23) CRC Handbook of Chemistry and Physi@RC Press: Boca IS Provided, this application will return the specified number

Raton, 1994, of training molecules regardless of the molecular similarities.

If the molecular similarity cutoff was supplied, every
molecule with molecular similarity equal to or higher than
the cutoff, regardless of the size of the training set, was used
for model creation. Finally, if both the size of the training
Application to the Prediction of Drug Transport Propertiesvied. set and the_ m0|e_CUIar similarity cu.toff were SeleCte(_j'_the
Chem 200Q 43, 3714-3717. molecular similarity cutoff was applied before the training

(26) Labute, P. MOE LogP(Octanol/Water) Model. unpublished. Source S€t size. For example, if there were fewer molecules with
code in $MOE/lib/svliquasar.svl/q_logp.svl (1998). similarity cutoffs than specified with the size of the training

(24) Wildman, S. A.; Crippen, G. M. Prediction of Physiochemical
Parameters by Atomic Contributionk. Chem. Inf. Comput. Sci
1999 39, 868-873.

(25) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar
Surface Area as a Sum of Fragment-Based Contributions and Its
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Figure 3. Descriptor efficiency for preprocessed global Figure 4. The similarity profile for a given test molecule.

models. anr? = 0.58; all 60 descriptors, arf = 0.70. The MOE

set, then only those with the given similarity cutoff were descriptors, on the other hand, gaverar 0.74 with the 9
used. On the other hand, even if more molecules met thedescriptors shown in Table 2; ad = 0.77 was obtained
given similarity cutoff, only the top molecules were kept. with all 146 MOE descriptors. Some of the descriptors are
In this paper, we report the results using the fixed training highly correlated. The Pearson product-moment correlations
size (case 1) to compare the performance of the on-the-fly betweenSlog P and logP(o/w) are 0.9 and between TPSA

local with the preprocessed global model. and vsa_pol are 0.93. Every other pair has correlation below
0.6. The relative importance of the descriptors in decreasing
Results and Discussion order is logP(o/w), Slog P, SMR_VSAS, weight, a_ICM,

Since a good model involves an efficient descriptor set as TPSA, vsa_pol, PEOE_RPC-, and PEOEVSA_POS. The
well as a good training set, performances were compareddescriptors were selected using the forward selection of the
on the same test set to examine the differences between th&tepwise regression tool in the JMP program. Although log
descriptors (fragment and MOE-molecular) and the models P(o/w) andSlog P are correlated, each made a correlation
(on-the fly local and preprocessed global). contribution to the minimal set to justify retaining both.

Comparison of Descriptor Types in Preprocessed  Figure 3 shows that MOE molecular descriptors were more
Global Model. Two types of preprocessed global models efficient than the fragment-based descriptors. Apparently, the
for log S were developed using the fragment and MOE- MOE descriptors more efficiently capture a broad solubility-
molecular descriptors. Figure 3 shows the performance of chemical space than molecular fragments. Similarly, MOE
these two descriptor types in terms Bf After the rapid descriptors outperformed fragment descriptors in absolute
rise inr? for two to three descriptors, a graded cumulative prediction error (APE). For absolute predicted deviations of
improvement is seen as the number of descriptors increasedess than 0.5 log unit, the full 60 fragment set gave an APE
to 30. For fragment-based descriptors, 10 descriptors gaveof 56% whereas the 9 MOE descriptors gave an APE of 51%.

Table 2. The Top Nine MOE Descriptors
descriptor description

a_ICM Atom information content (mean). This is the entropy of the element distribution in the molecule
(including implicit hydrogens but not lone pair pseudo-atoms). Let n; be the number of
occurrences of atomic number /in the molecule. Let p; = n/n where nis the sum of the n;.
The value of a_ICM is the negative of the sum over all i of p;log p.

weight Molecular weight (including implicit hydrogens) with atomic weights taken from ref 23.

PEOE_RPC- Relative negative partial charge: the smallest negative charge divided by the sum of the negative
charge.

PEOE_VSA_POS Total positive van der Waals surface area.

vsa__pol Approximation to the sum of VDW surface areas of polar atoms (atoms that are both hydrogen bond
donors and acceptors), such as —OH.

Slog P Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an atomic

contribution model? that calculates log P from the given structure, i.e., the correct protonation
state (washed structures). Results may vary from the log P(o/w) descriptor. The training set for
Slog P was ~7000 structures.

SMR_VSA5 Subdivided molecular refractivity (sum of v; such that R;is in 0.44—0.485).

TPSA Polar surface area calculated using group contributions to approximate the polar surface area from
connection table information only. The parametrization is that of Ertl et al.?

log P(o/w) Log of the octanol/water partition coefficient (including implicit hydrogens). This property is calculated

from a linear atom type model?® with 2 = 0.931, RMSE = 0.393 on 1827 molecules.
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Figure 5. Precision and accuracy increase with greater similarity. Each histogram graph corresponds to a specific average
similarity (AS) bin, for example, the first (upper left) graph shows the distribution of prediction deviations with AS > 0.8 bin while
the second is for AS bin = 0.7—0.8.

Although we initially explored both descriptor sets, further fragment descriptors 0.7. The local model with the MOE
analysis will focus on models based on the MOE descriptors. descriptors renderet? of 0.87 and the local model with
Choosing a Training Set for the On-the-Fly Local fragment descriptors 0.82. In both cases, the local model
Models. The Tanimoto coefficient was used as a measure approach delivered a 17% of prediction improvement.
of molecular similarity for bitwise fingerprints. For a given Similarity Impact on Precision and Accuracy. In Figure
molecule in a given database, there will be subgroups of 4, the Tanimoto coefficients were shown to have a monotonic
molecules, nearest neighbors, that have the same range ofelationship to the number of molecules that were in subsets
Tanimoto coefficients in the solubility database. Figure 4 with similar coefficients. For the on-the-fly local MOE
shows the Tanimoto coefficient for the illustrated compound models, a new parameter, the average similarity, AS, was
(2-{2-[(2)-5-nitro-thiazol-2-ylimino]thiazolidin-3-y} - defined as in eq 1,
ethanol) plotted against the number of molecules that are in
the top 1000 nearest neighboring subgroups. As similarity
declines, the number of nearest neighbors drops first rapidly
and then more slowly as the structures become less related.
Since molecular structures are not evenly distributed acrosswhere TC is the Tanimoto coefficient amdlis the size of
chemical space, some molecules have more very similartraining set. We tried to use AS to measure and compare
neighbors and some have fewer; however, for the dynamic quantitatively the similarities of the training sets. In Figure
local model based on similarity, the most similar set of 5, for each compound in the test set, the AS was calculated
molecules is always used as the training set to construct thefor the training set. The 1900 compounds were divided into
model and make the prediction. 6 AS groups: £0.8], [0.7, 0.8], [0.6, 0.7], [0.5, 0.6], [0.4,
On-the-Fly Local Models. A local model was developed  0.5], [<0.4]. Figure 5 shows the distributions of the absolute
with the MLR method for each of the 1900 molecules in prediction deviation (APD) for these six groups. The
the test set using the same descriptor set as the correspondingistograms show that molecular similarity dictates accuracy
global models. As discussed above, because of the highand precision as measured by the centering and the spread
efficiency of MOE descriptors, fewer training molecules were of the diagrams.
sufficient to create a local model and the direct benefit was For a given test molecule, structurally similar neighbors
that the overall similarity of the training set to the target share a core structure in such a way that their solubilities
molecule was higher for the MOE descriptor based model. can be modeled. This is the essence of local modeling in
The result was apparent and convincing: for the prediction which variations can be handled in an environment of low
of 1900 test molecules, the global model with MOE diversity and reduced prediction error. In addition, average
descriptors gave? of 0.74 and the global model with the similarity (AS) can be used as a confidence index for the

1 N
AS = N(ZTC) 1)
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Figure 6. Visual evaluation of the on-the-fly local model's properties.

specific target molecule. The global model, on the other hand, in this study, it should be applicable to many QSAR problems
only provides an average level of confidence over the training and some ADMET end points. However, because the
set. technique carries out on-the-fly selection of training sets from
Simpler and more accurate quantitative structure activity entire databases, it is not as rapid as pretrained computational
relationships (QSAR) are then possible because the trainingroutines. A study with a goal similar to that of this study
sets are closer core analogdéghis is similar to clustering  used a technique called local lazy regressfon.
algorithmg82°except for the training set. In contrast, global Visualization of Molecular Similarity. Since each on-
static models generally employ a large number of descriptorsthe-fly local model was built from a small number of similar
and predictions represent an average response based oftmaining molecules, their experimental property values would
global property variations. With the dynamic selection of be of great interest to the model user. The training set
training sets, the prediction error is small if suitable training information, readily available from this application, may
molecules are available in the database. For MOE descriptorsprovide the user further confidence in the prediction through
this was found to be the case for the aqueous solubility the visual verification of the structures of the training set.
database that was investigated. The average similarity, inThe SAR information in the training set can also provide
turn, can be used as an indicator of the prediction confidence.guidance for optimizing the lead compound for desired
Although this methodology was applied to aqueous solubility properties. For each prediction, the training set for the model
compound is shown. Structures of the molecules in the
(27) Hammett, L. PPhysical Organic Chemistry2nd ed.; McGraw- training set can be scrolled through to verify the similarity
Hill: New York, 1970. to the target molecule. The plot of Idgversus similarity
(28) Brown, R. D.; Martin, Y. C. Use of Structure-Activity Data To  for the training set is also shown with the molecules in the
Compare Structure-Based.Clustering Methods and Descriptors for training set in red squares and the target molecule in blue
Use in Compound selectiod. Chem. Inf. Comput. Sc1996 (see Figure 6). These plots make it easy for the user to see

36, 572-584. . . . . .
(29) Fan Y.: Shi, L. M.: Kohn, K. W.: Pommier, Y.; Weinstein, J. N whether the prediction is a more reliable interpolation or a

Quantitative Structure-Antitumor Activity Relationships of Camp-
tothecin Analogues: Cluster Analysis and Genetic Algorithm- (30) Bontempi, G.; Birattari, M.; Bersini H. Lazy learning for modeling
Based studies]. Med. Chem2001, 44, 3254-3263. and control designint. J. Control 1999 72, 643-658.
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less reliable extrapolation. The correlation diagram of the Summary

experimental property with the predicted property for the . . . .
training model also allows for a visual assessment of the For any modeling effort, quality data is needed. Quality

fithess of the dynamically built local model. Users can ask means tha_‘t data not only is experimentally accurate but _also
and evaluate issues such as the following: (1) Was the IS appropngtt_a for the target molecule. An op-the—fly selection
solubility prediction made with structurally similar training  ©f the training set was developed which enabled the
neighbors? (2) How does the training set's solubility vary? prediction of local QSPR models based on training cohorts
(3) How good is the model’s fit to the training set? that are similar to the target molecule. In this study, the very
Because the local on-the-fly models give more information rapid Daylight fingerprints were used as the basis for
than the preprocessed global model, virtual screening mightsimilarity. This makes an on-the-fly algorithm practical while
well be used before chemical synthesis in lead optimization. €nabling the training set to be customized to the target
Future Work. The current study utilized the Tanimoto molecule. This has advantages over a prediction that is based
coefficient with Daylight fingerprints to select the customized on a preprocessed regression model built on the entire dataset.
training set for a target molecule from a large dataset and aHowever, further improvements are still possible. If a rapid
set of MOE molecular descriptors for the generation of a measure of similarity is used as a screen, then some of the
local on-the-fly model. While this approach clearly delivered newer feature-rich descriptors like circular fingerprifits,
a good performance with reasonable computational speed, 8SCOSMOfrag, shape signature, LINGO SMILE substring, and
set of the same MOE descriptors could be used for the 3D similarity and graphs might be used to further enhance
training set selection and model building as was done by the prediction accuracy. One of the main advantages of a
otherst* However, this approach assumes that the same sekimilarity based paradigm is that the prediction can be
of descriptors identified from the global model is also assessed with respect to a confidence metric based on the
appropriate and efficient for selecting the local training set gjmjlarity of the target molecule to the training set. Predic-

for each target molecule, which might not be always right, tions that have poor similarity might be disregarded.
as discussed by the authors in the literature. Another potential

approach is to select a training set by merging all the MP0700155

compounds identified and apply multiple training set selec-

tion strateglles to build pn—the—fly local models. The closgst (31) Glen, R. C.; Bender, A.: Amby, C. H. Carlsson, L.: Boyer, S.:
molecules in the descriptor space could then be combined” " gy, 3. Circular fingerprints: Flexible molecular descriptors with

with the molecules identified by the fingerprints to build applications from physical chemistry to ADMEDrugs 2006 9,
models. 199-204.

VOL. 4, NO. 4 MOLECULAR PHARMACEUTICS 497



